initial commit

This commit is contained in:
2025-11-04 20:54:13 +01:00
parent 214d0a2a77
commit 95fb5c7020
3 changed files with 468 additions and 0 deletions

3
.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
venv
*.mp3
*.txt

232
README.md
View File

@@ -0,0 +1,232 @@
# Meeting Audio Summarizer
Dieses Python-Programm transkribiert Audio-Dateien von Meetings mit Whisper (lokal) und erstellt automatisch eine Zusammenfassung mit einem LLM über eine OpenAI-kompatible API.
## Features
- 🎤 **Lokale Transkription** mit OpenAI Whisper (keine Cloud erforderlich)
- 🤖 **Flexible LLM-Integration** über OpenAI-kompatible APIs
- 📝 **Strukturierte Zusammenfassungen** mit Hauptthemen, Entscheidungen und Action Items
- 🔄 **Provider-unabhängig** - funktioniert mit OpenAI, Anthropic, Ollama, LM Studio, etc.
- 💾 **Automatisches Speichern** von Transkript und Zusammenfassung
## Installation
### Voraussetzungen
- Python 3.8 oder höher
- ffmpeg (für Audio-Verarbeitung)
#### ffmpeg Installation
**Ubuntu/Debian:**
```bash
sudo apt update
sudo apt install ffmpeg
```
**macOS:**
```bash
brew install ffmpeg
```
**Windows:**
Lade ffmpeg von https://ffmpeg.org/download.html herunter und füge es zum PATH hinzu.
### Python-Pakete installieren
```bash
pip install -r requirements.txt
```
Whisper benötigt beim ersten Start einige Zeit zum Herunterladen der Modelle.
## Konfiguration
### API-Key setzen
Setze deinen API-Key als Umgebungsvariable:
```bash
export OPENAI_API_KEY="dein-api-key"
```
Oder übergebe ihn direkt beim Aufruf mit `--api-key`.
### Alternative LLM-Provider
Das Programm funktioniert mit jedem OpenAI-kompatiblen Endpunkt:
#### Ollama (lokal)
```bash
python meeting_summarizer.py meeting.mp3 \
--api-base http://localhost:11434/v1 \
--api-key ollama \
--model llama3.2
```
#### LM Studio (lokal)
```bash
python meeting_summarizer.py meeting.mp3 \
--api-base http://localhost:1234/v1 \
--api-key lm-studio \
--model local-model
```
#### Anthropic Claude (via OpenAI-Kompatibilitätslayer)
```bash
python meeting_summarizer.py meeting.mp3 \
--api-base https://api.anthropic.com/v1 \
--api-key $ANTHROPIC_API_KEY \
--model claude-3-5-sonnet-20241022
```
#### OpenRouter
```bash
python meeting_summarizer.py meeting.mp3 \
--api-base https://openrouter.ai/api/v1 \
--api-key $OPENROUTER_API_KEY \
--model anthropic/claude-3.5-sonnet
```
## Verwendung
### Basis-Verwendung
```bash
python meeting_summarizer.py meeting.mp3
```
Dies erstellt:
- `meeting_transcript.txt` - Vollständiges Transkript
- `meeting_summary.txt` - Zusammenfassung
### Mit Optionen
```bash
python meeting_summarizer.py meeting.wav \
--whisper-model medium \
--model gpt-4 \
--output-dir ./summaries \
--api-base https://api.openai.com/v1
```
### Alle Optionen
```
Optionen:
audio_file Pfad zur Audio-Datei (mp3, wav, m4a, etc.)
--whisper-model MODEL Whisper-Modellgröße (default: base)
Optionen: tiny, base, small, medium, large
--api-base URL Base URL für OpenAI-kompatible API
(default: https://api.openai.com/v1)
--api-key KEY API-Key (nutzt OPENAI_API_KEY wenn nicht angegeben)
--model MODEL LLM-Modellname (default: gpt-4)
--output-dir DIR Ausgabeverzeichnis für Transkript und Zusammenfassung
(default: gleiches Verzeichnis wie Audio-Datei)
--no-transcript Vollständiges Transkript nicht speichern
```
## Whisper-Modelle
Die Wahl des Whisper-Modells beeinflusst Geschwindigkeit und Genauigkeit:
| Modell | Parameter | Geschwindigkeit | Genauigkeit | Empfehlung |
|--------|-----------|-----------------|-------------|------------|
| tiny | 39M | Sehr schnell | Niedrig | Schnelle Tests |
| base | 74M | Schnell | Gut | **Standard** |
| small | 244M | Mittel | Sehr gut | Gute Balance |
| medium | 769M | Langsam | Ausgezeichnet | Hohe Qualität |
| large | 1550M | Sehr langsam | Beste | Produktionsumgebung |
**Empfehlung für Meetings:** `base` oder `small` für gute Balance zwischen Geschwindigkeit und Qualität.
## Unterstützte Audio-Formate
Alle Formate, die von ffmpeg unterstützt werden:
- MP3
- WAV
- M4A
- FLAC
- OGG
- WMA
- AAC
## Programmatische Verwendung
Du kannst das Programm auch als Modul verwenden:
```python
from meeting_summarizer import MeetingSummarizer
# Initialisiere den Summarizer
summarizer = MeetingSummarizer(
whisper_model="base",
api_base_url="http://localhost:11434/v1",
api_key="ollama",
model_name="llama3.2"
)
# Verarbeite ein Meeting
transcript, summary = summarizer.process_meeting(
audio_path="meeting.mp3",
output_dir="./output",
save_transcript=True
)
print(summary)
```
## Performance-Tipps
### Für schnellere Transkription:
- Nutze kleinere Whisper-Modelle (`tiny` oder `base`)
- Nutze GPU-Beschleunigung (CUDA) falls verfügbar
- Whisper installiert automatisch die passende Version für deine Hardware
### Für bessere Qualität:
- Nutze größere Whisper-Modelle (`medium` oder `large`)
- Stelle sicher, dass die Audio-Qualität gut ist
- Bei mehrsprachigen Meetings: Entferne `language="de"` im Code für Auto-Detection
## Tipps für embedded Systems
Da du mit embedded Systems arbeitest, hier einige Hinweise für ressourcenbeschränkte Umgebungen:
- **Raspberry Pi:** Nutze `tiny` oder `base` Modell
- **Echtzeit-Verarbeitung:** Whisper ist nicht für Echtzeit optimiert, verarbeite Aufnahmen nachträglich
- **Speicher:** `base` benötigt ~140MB RAM, `large` ~3GB
- **Alternative:** Nutze Whisper.cpp für C++-Integration in embedded Systems
## Troubleshooting
### "No module named 'whisper'"
```bash
pip install openai-whisper
```
### "ffmpeg not found"
Installiere ffmpeg (siehe Installationsanleitung oben)
### "API key not provided"
Setze die Umgebungsvariable oder übergebe `--api-key`
### Langsame Transkription
Nutze ein kleineres Modell oder aktiviere GPU-Beschleunigung
## Lizenz
Frei verwendbar für private und kommerzielle Zwecke.
## Hinweise
- Whisper läuft komplett lokal - keine Audio-Daten werden gesendet
- Nur der transkribierte Text wird an das LLM gesendet
- Achte auf Datenschutz bei sensiblen Meeting-Inhalten
- Die Qualität der Zusammenfassung hängt vom gewählten LLM ab

233
meeting_summarizer.py Normal file
View File

@@ -0,0 +1,233 @@
#!/usr/bin/env python3
"""
Meeting Audio Summarizer
Transcribes audio files using local Whisper and summarizes using OpenAI-compatible API
"""
import argparse
import os
from pathlib import Path
from typing import Optional
import whisper
from openai import OpenAI
class MeetingSummarizer:
"""Handles audio transcription and summarization of meetings"""
def __init__(
self,
whisper_model: str = "base",
api_base_url: str = "https://api.openai.com/v1",
api_key: Optional[str] = None,
model_name: str = "gpt-4",
output_language: str = "english"
):
"""
Initialize the meeting summarizer
Args:
whisper_model: Whisper model size (tiny, base, small, medium, large)
api_base_url: Base URL for OpenAI-compatible API
api_key: API key (will use OPENAI_API_KEY env var if not provided)
model_name: Name of the LLM model to use
output_language: Language for the summary output (e.g., "english", "german", "spanish")
"""
print(f"Loading Whisper model '{whisper_model}'...")
self.whisper_model = whisper.load_model(whisper_model)
self.output_language = output_language
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
if not self.api_key:
raise ValueError(
"API key not provided. Set OPENAI_API_KEY environment variable "
"or pass api_key parameter"
)
self.client = OpenAI(
api_key=self.api_key,
base_url=api_base_url
)
self.model_name = model_name
def transcribe_audio(self, audio_path: str) -> dict:
"""
Transcribe audio file using Whisper
Args:
audio_path: Path to audio file (mp3, wav, m4a, etc.)
Returns:
Dictionary with transcription results including text and segments
"""
print(f"Transcribing audio file: {audio_path}")
if not Path(audio_path).exists():
raise FileNotFoundError(f"Audio file not found: {audio_path}")
result = self.whisper_model.transcribe(
audio_path,
language=None, # Auto-detect language
verbose=False
)
print(f"Transcription complete. Length: {len(result['text'])} characters")
return result
def summarize_text(self, text: str) -> str:
"""
Summarize transcribed text using LLM
Args:
text: Transcribed text to summarize
Returns:
Summary text
"""
print("Generating summary using LLM...")
system_prompt = f"""You are an assistant that summarizes meeting transcripts.
Create a structured summary in {self.output_language} with the following points:
1. **Main Topics**: The most important topics discussed
2. **Decisions**: Decisions that were made
3. **Action Items**: Tasks and responsibilities
4. **Next Steps**: Planned next steps
Be precise and concrete. Write your entire response in {self.output_language}."""
response = self.client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Please summarize this meeting transcript:\n\n{text}"}
],
temperature=0.3,
max_tokens=2000
)
summary = response.choices[0].message.content
print("Summary generated successfully")
return summary
def process_meeting(
self,
audio_path: str,
output_dir: Optional[str] = None,
save_transcript: bool = True
) -> tuple[str, str]:
"""
Complete pipeline: transcribe and summarize meeting audio
Args:
audio_path: Path to audio file
output_dir: Directory to save outputs (default: same as audio file)
save_transcript: Whether to save the full transcript
Returns:
Tuple of (transcript, summary)
"""
# Transcribe
result = self.transcribe_audio(audio_path)
transcript = result["text"]
# Generate summary
summary = self.summarize_text(transcript)
# Save outputs if requested
if output_dir or save_transcript:
audio_file = Path(audio_path)
if output_dir:
output_path = Path(output_dir)
else:
output_path = audio_file.parent
output_path.mkdir(parents=True, exist_ok=True)
base_name = audio_file.stem
if save_transcript:
transcript_file = output_path / f"{base_name}_transcript.txt"
transcript_file.write_text(transcript, encoding="utf-8")
print(f"Transcript saved to: {transcript_file}")
summary_file = output_path / f"{base_name}_summary.txt"
summary_file.write_text(summary, encoding="utf-8")
print(f"Summary saved to: {summary_file}")
return transcript, summary
def main():
parser = argparse.ArgumentParser(
description="Transcribe and summarize meeting audio files"
)
parser.add_argument(
"audio_file",
help="Path to audio file (mp3, wav, m4a, etc.)"
)
parser.add_argument(
"--whisper-model",
default="base",
choices=["tiny", "base", "small", "medium", "large"],
help="Whisper model size (default: base)"
)
parser.add_argument(
"--api-base",
default="https://api.openai.com/v1",
help="Base URL for OpenAI-compatible API"
)
parser.add_argument(
"--api-key",
help="API key (defaults to OPENAI_API_KEY env var)"
)
parser.add_argument(
"--model",
default="gpt-4",
help="LLM model name (default: gpt-4)"
)
parser.add_argument(
"--language",
default="english",
help="Output language for the summary (e.g., english, german, spanish) (default: english)"
)
parser.add_argument(
"--output-dir",
help="Output directory for transcript and summary"
)
parser.add_argument(
"--no-transcript",
action="store_true",
help="Don't save the full transcript"
)
args = parser.parse_args()
try:
summarizer = MeetingSummarizer(
whisper_model=args.whisper_model,
api_base_url=args.api_base,
api_key=args.api_key,
model_name=args.model,
output_language=args.language
)
transcript, summary = summarizer.process_meeting(
audio_path=args.audio_file,
output_dir=args.output_dir,
save_transcript=not args.no_transcript
)
print("\n" + "=" * 80)
print("SUMMARY")
print("=" * 80)
print(summary)
except Exception as e:
print(f"Error: {e}")
return 1
return 0
if __name__ == "__main__":
exit(main())