234 lines
7.2 KiB
Python
234 lines
7.2 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Meeting Audio Summarizer
|
|
Transcribes audio files using local Whisper and summarizes using OpenAI-compatible API
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
import whisper
|
|
from openai import OpenAI
|
|
|
|
|
|
class MeetingSummarizer:
|
|
"""Handles audio transcription and summarization of meetings"""
|
|
|
|
def __init__(
|
|
self,
|
|
whisper_model: str = "base",
|
|
api_base_url: str = "https://api.openai.com/v1",
|
|
api_key: Optional[str] = None,
|
|
model_name: str = "gpt-4",
|
|
output_language: str = "english"
|
|
):
|
|
"""
|
|
Initialize the meeting summarizer
|
|
|
|
Args:
|
|
whisper_model: Whisper model size (tiny, base, small, medium, large)
|
|
api_base_url: Base URL for OpenAI-compatible API
|
|
api_key: API key (will use OPENAI_API_KEY env var if not provided)
|
|
model_name: Name of the LLM model to use
|
|
output_language: Language for the summary output (e.g., "english", "german", "spanish")
|
|
"""
|
|
print(f"Loading Whisper model '{whisper_model}'...")
|
|
self.whisper_model = whisper.load_model(whisper_model)
|
|
self.output_language = output_language
|
|
|
|
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
|
|
if not self.api_key:
|
|
raise ValueError(
|
|
"API key not provided. Set OPENAI_API_KEY environment variable "
|
|
"or pass api_key parameter"
|
|
)
|
|
|
|
self.client = OpenAI(
|
|
api_key=self.api_key,
|
|
base_url=api_base_url
|
|
)
|
|
self.model_name = model_name
|
|
|
|
def transcribe_audio(self, audio_path: str) -> dict:
|
|
"""
|
|
Transcribe audio file using Whisper
|
|
|
|
Args:
|
|
audio_path: Path to audio file (mp3, wav, m4a, etc.)
|
|
|
|
Returns:
|
|
Dictionary with transcription results including text and segments
|
|
"""
|
|
print(f"Transcribing audio file: {audio_path}")
|
|
|
|
if not Path(audio_path).exists():
|
|
raise FileNotFoundError(f"Audio file not found: {audio_path}")
|
|
|
|
result = self.whisper_model.transcribe(
|
|
audio_path,
|
|
language=None, # Auto-detect language
|
|
verbose=False
|
|
)
|
|
|
|
print(f"Transcription complete. Length: {len(result['text'])} characters")
|
|
return result
|
|
|
|
def summarize_text(self, text: str) -> str:
|
|
"""
|
|
Summarize transcribed text using LLM
|
|
|
|
Args:
|
|
text: Transcribed text to summarize
|
|
|
|
Returns:
|
|
Summary text
|
|
"""
|
|
print("Generating summary using LLM...")
|
|
|
|
system_prompt = f"""You are an assistant that summarizes meeting transcripts.
|
|
Create a structured summary in {self.output_language} with the following points:
|
|
|
|
1. **Main Topics**: The most important topics discussed
|
|
2. **Decisions**: Decisions that were made
|
|
3. **Action Items**: Tasks and responsibilities
|
|
4. **Next Steps**: Planned next steps
|
|
|
|
Be precise and concrete. Write your entire response in {self.output_language}."""
|
|
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=[
|
|
{"role": "system", "content": system_prompt},
|
|
{"role": "user", "content": f"Please summarize this meeting transcript:\n\n{text}"}
|
|
],
|
|
temperature=0.3,
|
|
max_tokens=2000
|
|
)
|
|
|
|
summary = response.choices[0].message.content
|
|
print("Summary generated successfully")
|
|
return summary
|
|
|
|
def process_meeting(
|
|
self,
|
|
audio_path: str,
|
|
output_dir: Optional[str] = None,
|
|
save_transcript: bool = True
|
|
) -> tuple[str, str]:
|
|
"""
|
|
Complete pipeline: transcribe and summarize meeting audio
|
|
|
|
Args:
|
|
audio_path: Path to audio file
|
|
output_dir: Directory to save outputs (default: same as audio file)
|
|
save_transcript: Whether to save the full transcript
|
|
|
|
Returns:
|
|
Tuple of (transcript, summary)
|
|
"""
|
|
# Transcribe
|
|
result = self.transcribe_audio(audio_path)
|
|
transcript = result["text"]
|
|
|
|
# Generate summary
|
|
summary = self.summarize_text(transcript)
|
|
|
|
# Save outputs if requested
|
|
if output_dir or save_transcript:
|
|
audio_file = Path(audio_path)
|
|
if output_dir:
|
|
output_path = Path(output_dir)
|
|
else:
|
|
output_path = audio_file.parent
|
|
|
|
output_path.mkdir(parents=True, exist_ok=True)
|
|
base_name = audio_file.stem
|
|
|
|
if save_transcript:
|
|
transcript_file = output_path / f"{base_name}_transcript.txt"
|
|
transcript_file.write_text(transcript, encoding="utf-8")
|
|
print(f"Transcript saved to: {transcript_file}")
|
|
|
|
summary_file = output_path / f"{base_name}_summary.txt"
|
|
summary_file.write_text(summary, encoding="utf-8")
|
|
print(f"Summary saved to: {summary_file}")
|
|
|
|
return transcript, summary
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description="Transcribe and summarize meeting audio files"
|
|
)
|
|
parser.add_argument(
|
|
"audio_file",
|
|
help="Path to audio file (mp3, wav, m4a, etc.)"
|
|
)
|
|
parser.add_argument(
|
|
"--whisper-model",
|
|
default="base",
|
|
choices=["tiny", "base", "small", "medium", "large"],
|
|
help="Whisper model size (default: base)"
|
|
)
|
|
parser.add_argument(
|
|
"--api-base",
|
|
default="https://api.openai.com/v1",
|
|
help="Base URL for OpenAI-compatible API"
|
|
)
|
|
parser.add_argument(
|
|
"--api-key",
|
|
help="API key (defaults to OPENAI_API_KEY env var)"
|
|
)
|
|
parser.add_argument(
|
|
"--model",
|
|
default="gpt-4",
|
|
help="LLM model name (default: gpt-4)"
|
|
)
|
|
parser.add_argument(
|
|
"--language",
|
|
default="english",
|
|
help="Output language for the summary (e.g., english, german, spanish) (default: english)"
|
|
)
|
|
parser.add_argument(
|
|
"--output-dir",
|
|
help="Output directory for transcript and summary"
|
|
)
|
|
parser.add_argument(
|
|
"--no-transcript",
|
|
action="store_true",
|
|
help="Don't save the full transcript"
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
try:
|
|
summarizer = MeetingSummarizer(
|
|
whisper_model=args.whisper_model,
|
|
api_base_url=args.api_base,
|
|
api_key=args.api_key,
|
|
model_name=args.model,
|
|
output_language=args.language
|
|
)
|
|
|
|
transcript, summary = summarizer.process_meeting(
|
|
audio_path=args.audio_file,
|
|
output_dir=args.output_dir,
|
|
save_transcript=not args.no_transcript
|
|
)
|
|
|
|
print("\n" + "=" * 80)
|
|
print("SUMMARY")
|
|
print("=" * 80)
|
|
print(summary)
|
|
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
return 1
|
|
|
|
return 0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
exit(main())
|