77 lines
2.0 KiB
Python
77 lines
2.0 KiB
Python
# automatically generated by the FlatBuffers compiler, do not modify
|
|
|
|
# namespace: structure
|
|
|
|
import flatbuffers
|
|
|
|
|
|
class TensorMap(object):
|
|
__slots__ = ['_tab']
|
|
|
|
@classmethod
|
|
def GetRootAsTensorMap(cls, buf, offset):
|
|
n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset)
|
|
x = TensorMap()
|
|
x.Init(buf, n + offset)
|
|
return x
|
|
|
|
# TensorMap
|
|
def Init(self, buf, pos):
|
|
self._tab = flatbuffers.table.Table(buf, pos)
|
|
|
|
# TensorMap
|
|
def Name(self):
|
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
|
|
if o != 0:
|
|
return self._tab.String(o + self._tab.Pos)
|
|
return None
|
|
|
|
# TensorMap
|
|
def Info(self):
|
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6))
|
|
if o != 0:
|
|
return self._tab.String(o + self._tab.Pos)
|
|
return None
|
|
|
|
# TensorMap
|
|
def Tensors(self, j):
|
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8))
|
|
if o != 0:
|
|
x = self._tab.Vector(o)
|
|
x += flatbuffers.number_types.UOffsetTFlags.py_type(j) * 4
|
|
x = self._tab.Indirect(x)
|
|
from .Tensor import Tensor
|
|
obj = Tensor()
|
|
obj.Init(self._tab.Bytes, x)
|
|
return obj
|
|
return None
|
|
|
|
# TensorMap
|
|
def TensorsLength(self):
|
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8))
|
|
if o != 0:
|
|
return self._tab.VectorLen(o)
|
|
return 0
|
|
|
|
|
|
def TensorMapStart(builder): builder.StartObject(3)
|
|
|
|
|
|
def TensorMapAddName(builder, name): builder.PrependUOffsetTRelativeSlot(
|
|
0, flatbuffers.number_types.UOffsetTFlags.py_type(name), 0)
|
|
|
|
|
|
def TensorMapAddInfo(builder, info): builder.PrependUOffsetTRelativeSlot(
|
|
1, flatbuffers.number_types.UOffsetTFlags.py_type(info), 0)
|
|
|
|
|
|
def TensorMapAddTensors(builder, tensors): builder.PrependUOffsetTRelativeSlot(
|
|
2, flatbuffers.number_types.UOffsetTFlags.py_type(tensors), 0)
|
|
|
|
|
|
def TensorMapStartTensorsVector(
|
|
builder, numElems): return builder.StartVector(4, numElems, 4)
|
|
|
|
|
|
def TensorMapEnd(builder): return builder.EndObject()
|